
BOUNDARY LAYER OF A MICROSTRUCTURAL FLUID ON A PLATE 

E. N. Korzhev and A. T. Listrov UDC 532.135 

A numerical solution of the self-similar problem of the boundary layer of a micro- 
polar model fluid on a semlinfinlte plate is obtained. 

The ideas of the Prandtl boundary layer, which have been widely developed in the classi- 
cal hydromechanics of a viscous fluid [i], have been successfully extended to rheologlcally 
complex media. A systpm"tlc account and analysis of the results obtained for non-Newtonian 
fluids are given in [2], for example. It is of interest to apply the hypothesis of a 5ound- 
ary layer in asymnetric fluid mechanics [3, 4], which provides a viewpoint for description 
of the behavior of such structurally Inhomogeneous media as liquid crystals, ferrofluids, 
suspensions, blood, etc. 

In [5] four different types of equations of a plane boundary layer for a micropolar 
fluid model [6] were derived for the first time. The question of the existence of self- 
similar problems for a two-dimensional micropolar boundary layer was analyzed in [6] with 
the aid of the group method [7]. 

In the present work we obtain a numerical solution of the self-similar problem of the 
boundary layer of a mlcropolar fluid of the fourth type on a semi-infinite thin plate (the 
generalized Blasius problem). The question of the effect of rheological coefficients and 
different kinds of boundary conditions for microrotations on the flow regime is investigated. 

i. We consider a steady flow of an incompressible micropolar fluld alone a plane thin 
semi-lnfinite plate. The origin of the Cartesian coordinate system is taken at the front 
point of the plate. The x axis is directed along the plate and the y axis along a normal to 
it. Let U= be the velocity of the incident flow, which is parallel to the y axis. The equa- 
tions of a mlcropolar boundary layer of the fourth type then take the following form [5]: 

__Ou -q-v --:Ou v (1,-}-s) o2u -b-vs--,~ 
Ox Oy 09 ~ Oy 

Ow Ow OZw Ou Ow 
- - + v  = v m - - ,  - - +  --0.  

Ox Og 092 Ox Oy 

(1.1) 

The boundary conditions are assigned in the form 

u(x, O) =v(x,  0 )=0 ,  w(X, O)=w o, (1.2) 

where Wo is the still undetermined microrotation on the solid wall, 

u(x, y)-+U| w(x, y)--~O, y-+oo. (1.3) 

Following classical boundary-layer theory [i], we introduce a stream function ~(x, y), 
such that the continuity condition is satisfied 

OT O~ 
oy Ox 

Then, in the usual way, we replace ~(x, y) by the dimensionless stream function f(n): 

~ ,  9) = ]/2vxU| ~(~), ~ = 9 VU| (1.4) 
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Fig. i. Distribution of longitudinal and trans- 
Verse velocity components for different values of 
theological parameters: i) s = 0.5; 2) 2.5; 3) i0; 
the solid lines correspond to m - 0.5, the dashed 
lines to m - i0, and the dot--dash lines to a New- 
ionian fluid. 

In the new variables the velocity vector components have the form 

/- ~Um 

u = u.F, v = | 2x (~f' -- I). 

In place of the mlcrorotation component w(x, y) we introduce the dlmensionless micro- 
rotation function $(q) : 

w (x, y) = u| ~ ~0 (,1). ( 1 . 5 )  

When (1.4) and (1.5) are taken into account, the initial system of equations (i.i) re- 
duces to a system of ordinary differential equations 

( l @ s ) r ' " @ f r - ~ - s ~ ' = o ,  m ~ " + ( [ ~ ) '  = 0 .  ( 1 . 6 )  

We replace the boundary conditions (1.2) and (1.3) by the conditions 

F/ 4w o vx 
f (o) = [' (o) = o, ~(o)= u. u| 
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(I. 7) 

(1.8) 

e 

condition [8], i.e, the condition wo = 0. As indicated in [5], however, in this case for 
equations of the fourth type of micropolar boundary layer w - 0 throughout the flow. 

It was suggested in [9] that the condition of zero value of the antisymmetric part of 
the stress tensor 

( 0. 1 = ~'0 (2.1) 
2 O x  O y  , y=0 

on the wall should be used as a boundary condition for microrotation on a solid wall. 

In this case the second boundary condition (1.7) takes the form 

~(0) = -- lf. (0). (2.2) 
2 

The most common boundary condition on a solid wall for mlcrorotation is the no-slip 
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TABLE i. Boundary-Layer Thicknesses and Friction 
Stress on Plate in Relation to Values of Rheological 
Parameters of Fluid 
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TABLE 2. Boundary-Layer Thicknesses and Friction 
Stress on Plate in Relation to Boundary Parameter 
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With boundary condition (2.2) the considered problem becomes self-similar. The boundary- 
value problem (1.6)-(1.8) with (2.2) taken into account was reduced in the present work to 
a Cauchy problem with certain, initially arbitrary, values of A = f"(O) and B = ~'(0). We 
integrated the obtained Cauchy problem by the Runge-Kutta method, using "ranging" [i0] to 
select values of A and B at which the boundary conditions (1.8) are satisfied. The problem 
was solved for different values of the parameters s and m on a BESM-4 computer. 

The distribution of the longitudinal and transverse velocity components is shown in 
Fig. i. For any values of s and m the velocity profiles become less filled than the Blasius 
profile (dot--dash line). Figure ib,c indicates that the transverse velocity component in- 
creases more slowly at first, but subsequently attains higher values on the outer boundary 
of the boundary layer than in the case of a Newtonian fluid. For m > 1 within the boundary 
layer the longitudinal velocity component attains higher values than the velocity of the ex- 
ternal flow, which is indicated by the characteristic maxima on Fig. la,c for m - i0. 

The obtained solutions for the velocity distribution and microrotation allow us to cal- 
culate the stresses and the couple stresses in the boundary layer 

i" t,,,=U| ~ C ' - ~ } ,  t,,,.=u, ] 2x I(l+s) +sq,], 

,.~u. f--U7 ~'2U~ #. 
, n ~ , -  2px ~ ~ 0 1 ~ " §  m~, , -  2pvx 

The local tangential stress on the plate is 
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to (x) = t..'~ ~ I(1 -:- s) (o) " s,~ (o)]. 

The displacement thickness and the momentum thickness are given by the relations [i] 

/ 1 ' 
6*  = t - " , tg  = . ro ,!l, ~" , U,,,, U~  

6**= ~ 1 -  u '  

0 

where ql corresponds to a point lying outside the boundary layer. 

Table i gives the main flow characteristics in relation to the change in the dimension- 
less parameters s and m. Table i shows that the houndary-layer thicknesses and friction 
stress on the plate increase with increase in s. This is qualitatively consistent with the 
results of calculations for the boundary layer of suspensions of solid particles in water 
[ii]. With increase in m and fixed s the relative boundary layer thickness ~ and the dis- 
placement thickness 6* increase, while the momentum thickness 6"* and friction stress To on 
the plate decrease. 

3. It is apparent from the second boundary condition (1.7) that if we assign on the 
plate the condition of variation of the rate of microrotation in accordance with the law 

I/ c~U| U| (3.1) 
"a'~ - -  4 v X  ' 

where a is a constant that depends on the physical characteristics of the surface in the 
flow and is a measure of the interaction of the fluid and solid wall, the considered problem 
also becomes self-slm~lar. 

The velocity distribution obtained for s = 0.5 and m = i and different values of u is 
shown in Fig. 2a, b. A characteristic feature of flows with boundary condition (3.1) is the 
appearance of S-shaped profiles of the longitudinal velocity component (curves 6 and 7, Fig. 
2a) and "induced flows" near the plate (i-3, Fig. 2). Calculations showed that the distor- 
tion of the S-shaped velocity profiles increases with increase in m. The transverse velocity 
component increases more rapidly with increase in the negative value of u at small q than in 
the case of Newtonian fluids (dot-dash lines), but at the outer boundary of the boundary layer 
its value is reduced, as Fig. 2b clearly shows. 

u / u ~ ~ ,  a 

4 o r I o z , e q 

Fig. 2. Distribution of: a) longitudinal velocity com- 
ponent; b) transverse velocity component for s-0.5, 
m = i. i) ~ =-2.5; 2) -1.5; 3) -0.5; 4) --0.5f"(O) = 
-43.2112; 5) 0.75; 6) 1.25; 7) 1.75. 
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The values of the relative boundary-layer thickness, displacement thickness, momentum 
thickness, and local tangential stress on the plate in relation to ~ are given in Table 2. 

It should be noted that the obtained solutions include, as a special case of the con- 
sidered problem, the solution for the boundary layer of a Newtonian fluid. For this we must 
put s - O. 

NOTATION 

x, y, z, Cartesian coordinates; u, v, velocity vector components; w, microrotation 
vector component; u, ~, v2, coefficients of shear, rotational, and couple viscosity; B = 
u/p, dynamic coefficient of shear viscosity; 0, density; wo, microtation on plate; U=, 
velocity of incident flow; s - ul/~, m = Juz/~, dimensionless rheological parameters of 
fluid model; J, microinertia; A, B, u, constants~ T, stream function; ~, self-slmilar vari- 
able; f, ~, dimensionless stream and microrotation functions; txy , tyx, stress tensor com- 
ponents; mxy , myx, couple stress tensor components; To, local tangential stress on plate; 
6, relative boundary-layer thickness; 6", displacement thickness; g**, momentum thickness. 
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HEAT TRANSFER IN A STRETCHED BICOMPONENT FILM 

N. V. Tyabin, V. M. Shapovalov, and V. P. Remnev UDC 677.4;541.12.036 

The temperature distribution in a bicomponent film during nonisothermal stretch- 
ing is discussed without allowance for dissipative heating. 

Bicomponent films (laminates) are increasingly used, because such films are of particu- 
larly good performance, e.g., in the production of crimped materials, where the crimping 
arises from differences in elasticity of the components. A polymer characteristically has 
very marked temperature dependence of the elastic parameters, so the working temperature is 
a major parameter in production of crimped bicomponent material. Appropriate thermal con- 
ditions can be provided in pulling such films in order to control the crimping [i, 2]. 

Here we consider the temperature pattern in such a film during nonisothermal stretching. 

Figure 1 shows the drawing scheme. 

We use an ~mobile Euler coordinate system with the x axis coincident with the direction 
of motion of the film, while the y axis is perpendicular to that direction, and the origin 
and the x axis are equidistant from the outer surfaces of the film. 

We assume a linear distribution for the axial velocity of the film in the drawing zone 
[3-5]: 
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